• 赵拥军

    发布时间:2021-09-09浏览次数🚶🏻‍♂️:19337

    研究员☺️、博士生导师

    杏鑫

    通讯地址:上海市杨浦区邯郸路220号光华楼东主楼2508室

    电子邮箱:zhaoyj@fudan.edu.cn

    教育经历:

    · 19977月,北京航空航天大学,获航空发动机学士学位。

    · 20003月🏵,北京航空航天大学,获航空宇航推进理论与工程硕士学位。

    · 20055月♛,佐治亚理工学院(Georgia Institute of Technology),获航空工程博士学位✂️。

    工作经历: 

    · 20056月 - 2020年2月通用电气公司(GE Company)💋。

    · 2020年3月 - 至今🧑🏽‍🚒,杏鑫平台。

    主要研究领域及招生方向:

    绿色智能动力与能源系统课题组面向国家重大需求🦸🏽‍♂️,将数理基础、技术科学与工程实践紧密结合🎑,融合数字化🏈、智能化与系统化等领域的最新进展,以航空发动机及燃气轮机💕👼、绿色智能动力与能源系统👩🏼‍🎤、低空飞行器等高端装备为主要应用场景👷,研究解决下述方向的关键科学与共性技术难题:

    · 复杂系统高精度建模与仿真、设计与优化

    · 多层级多物理场耦合试验🍭、诊断🧑🏻‍🌾、预测与控制

    · 高端装备智能运维与健康管理

    本课题组注重学科交叉融合,欢迎具有航空航天、能源与动力、工程热物理、力学、机械🤺、自动化与控制、大数据与人工智能、信息与计算机科学等专业背景的同学加入本组🍟,攻读硕士、博士学位,欢迎博士后加盟!

    现主持的主要科研项目:

    · 航空发动机及燃气轮机系统仿真与优化体系集成

    · 航空发动机热力性能衰退与气路故障诊断技术研究

    · 重型燃气轮机全寿命周期高精度性能仿真等

    主要学术任职🎅🏿:

    · 科技部评审专家

    · 教育部评审专家

    · 上海市科学技术奖会评专家

    · 上海市航空学会空气动力学专业委员会委员

    · 上海市航空学会航空机械工程专业委员会委员

    · 上海市航空学会技术经济专业委员会委员

    · 上海市航空发动机数字孪生重点实验室外部专家等

    代表性学术论文✒️:

    · Transient gas path fault diagnosis of aero engine based on domain adaptive offline reinforcement learning[J], Aerospace Science and Technology, Volume 155, Part 32024109701

    · A novel method for aero-engine map calibration using adaptation factor surface[J], Measurement, Volume 239⛩,2025,115394

    · A novel approach to aeroengine performance diagnosis based on physical model coupling data-driven using low-rank multimodal fusion method[J], Journal of the Global Power and Propulsion Society, 2024, 8:334–348

    · A Novel Performance Adaptation Method For Aero-Engine Matching Using Adaptation Factor Surface[J]. Journal of the Global Power and Propulsion Society, 2024, 8: 154–165

    · 基于自适应因子曲面的航空发动机过渡态性能自适应方法[J], 复旦学报(自然科学版),2024,Vol.63 No.6

    · A Novel Performance Adaptation Method For Aero-Engine Matching Using Adaptation Factor Surface[C], Proceedings of Global Power and Propulsion Society, Hongkong, 2023,10

    · A novel approach to aeroengine performance diagnosis based on physical model coupling data-driven using low-rank multimodal fusion method[C], Proceedings of Global Power and Propulsion Society, Hongkong, 2023,10

    · A Novel Digital Twin Framework for Aeroengine Performance Diagnosis[J]. Aerospace, 2023,10(9), 789

    · Engine gas path component fault diagnosis based on a sparse deep stacking network[J]. Heliyon, 2023, 9(1), e19252

    · Data-Driven Exhaust Gas Temperature Baseline Predictions for Aeroengine Based on Machine Learning Algorithms[J]. Aerospace, 2023, 10(1), 17

    · Probability-based service safety life prediction approach of raw and treated turbine blades regarding combined cycle fatigue[J]. Aerospace Science and Technology, 2021, 110: 106513.

    · Probabilistic analyses of structural dynamic response with modified Kriging-based moving extremum framework[J]. Engineering Failure Analysis, 2021, 125:105398.

    · Competitive cracking behavior and microscopic mechanism of Ni-based superalloy blade respecting accelerated CCF failure[J]. International Journal of Fatigue💐,2021🏃🏻‍♀️,150106306.

    · Enhanced network learning model with intelligent operator for the motion reliability evaluation of flexible mechanism[J]. Aerospace Science and Technology, 2020, 107: 106342.

    · Structural dynamic reliability estimation with enhanced extremum Kriging method[C]. 2020 International Conference on Quality, Reliability, Risk, Maintenance, and Safety Engineering (QR2MSE 2020), October 8th-11th, 2020, Xi’an, Shaanxi, China.

    · A sequential approach for gas turbine power plant preventive maintenance scheduling[J], Journal of Engineering for Gas Turbine and Power. 128, n.4, 2006: 796-805. 

    · A profit based approach for gas turbine power plant outage planning[J]. Journal of Engineering for Gas Turbine and Power, 128, n.4, 2006: 806-814.

    · An integrated framework for gas turbine power plant operational modeling and optimization[C]. Proceedings of GT2005, ASME Turbo Expo 2005: Power for Land, Sea and Air, June 6-9, 2005, Reno-Tahoe, Nevada.  

    · Power plant systems operational scheduling using a dual-time scale[C]. 10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, 2004, Albany, New York.

    · Modeling and cost optimization of combined cycle heat recovery generator systems[C]. Proceedings of ASME Turbo Expo 2003, Power of Land, Sea, and Air, June 16-19, 2003, Atlanta, Georgia.

    · /跨音风扇气动设计体系有关流动模型改进探讨[J]. 航空动力学报, 14卷第1期🍒,19991





    杏鑫专业提供👆🏽:杏鑫👰🏻、等服务,提供最新官网平台、地址、注册、登陆、登录、入口、全站、网站、网页、网址、娱乐、手机版、app、下载、欧洲杯、欧冠、nba、世界杯、英超等,界面美观优质完美,安全稳定,服务一流🧝🏿‍♀️,杏鑫欢迎您。 杏鑫官网xml地图
    杏鑫 杏鑫 杏鑫 杏鑫 杏鑫 杏鑫 杏鑫 杏鑫 杏鑫 杏鑫